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Introduction-Motivation

Computational Inverse Problems

Abstract Forward Formulation. Let us denote by f an operator that
maps an unknown function m : Rd → R (d ≥ 1) to datum g, that is

f (m) = g.

where f :M 7→ G is assumed to be nonlinear in general.

Inversion Problem Objective. For a given datum g∗, we are
interested in finding an m∗ such that f (m∗) matches the datum g∗, that
is, f (m∗) = g∗.
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Introduction-Motivation

Computational Inverse Problems

Computational Inversion. In the absence of analytical inversion
formulas, the inverse problem is often solve computationally by taking
the m∗ that minimizes the discrepancy between the prediction f (m)

and the datum g, as the solution. That is

m∗ = arg min
m

Φ(m) :=
1
2
d2(f (m),g)

for some given metric d.

Computational Challenges. (i) The minimization problem is often
non-convex when f is nonlinear; (ii) Computational cost can be high
when the evaluation of f is expensive.
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Introduction-Motivation

Computational Inverse Problems

Ideal Metric to Use. When deciding what metric to use, we consider
the following factors: (i) its easiness to compute; (ii) its convexity
property; (iii) its sensitivity to high-frequency noise in data g; (iv) its
sensitivity to m (through f ).

Classical L2 Least-Squares. The L2 metric is the most popular one:

d(f (m),g) = ‖f (m)− g‖L2(Rd )

due to its mathematical and computational attractions.
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Introduction-Motivation

The Quadratic Wasserstein Inversion

The W2 Distance for Inversion. The quadratic Wasserstein metric is
recently proposed as an alternative to the L2 metric in solving inverse
matching problems.

Let f and g be two probability densities on Rd . The square of the
quadratic Wasserstein distance between f and g, denoted as W 2

2 (f ,g),
is defined as

W 2
2 (f ,g) := inf

T∈T

∫
Rd
|x− T (x)|2f (x)dx,

where T is the set of measure preserving transforms from f to g.
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Introduction-Motivation

The Quadratic Wasserstein Inversion

The optimal transportation map is determined by the solution of a
version of the Monge-Ampère equation.

Theorem (c.g. Villani 2003)

Let dµ(x) = f (x)dx,dν(x) = g(x)dx. The squared Wasserstein metric
is given by

W 2
2 (µ, ν) =

∫
X
|x−∇u(x)|2f (x)dx

where u is the solution of{
det(D2u(x)) = f (x)

g(∇u(x)) x ∈ X
u is convex
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Introduction-Motivation

The Quadratic Wasserstein Inversion

The W2 Distance for Inversion. The minimization problem is now:

m∗ = arg min
m

Φ(m) :=
1
2

W 2
2 (f (m),g).

The Computational Cost. An immediate observation is that
computationally minimizing W 2

2 (f (m),g) is much more expensive than
minimizing ‖f (m)− g‖2L2 since the evaluation of W 2

2 (f (m),g) is very
expensive!
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Introduction-Motivation

W2 Inversion of a Diffusion Problem

Take the following diffusion model with absorption coefficient σ:

−∆u(x) + σ(x)u(x) = 0, in Ω

n · ∇u + u(x) = q(x), on ∂Ω

Assume that we could measure datum:

f (σ) := σ u[σ]

where u[σ] is used to make it clear that u depend on σ.

The inverse problem aims at reconstructing σ from measured f (σ).
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Introduction-Motivation

W2 Inversion: Insensitivity to Noise

Figure 1: Inversion for σ in Ω = (0,1) with noise-free (top row) and noisy data
(bottom row) under the L2 (left), Ḣ−1 (middle) and W2 (right) metrics. The
noise level in the bottom row is 12% for each case.
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Introduction-Motivation

W2 Inversion: Reduction of Resolution

Figure 2: Inversion for σ in two-dimensional case in the domain
Ω = (0,1)× (0,1) with data containing 10% random noise. Shown from left to
right are the true coefficient, the reconstructions with the L2, H−1 and W2

metrics respectively.
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The Asymptotic Regime

The Asymptotic Regime: Background and Notations

Notations.

For any s ∈ R, let Hs(Rd ) be the space of functions

Hs(Rd ) := {m(x) : ‖m‖2Hs(Rd ) :=

∫
Rd
〈ξ〉2s|m̂(ξ)|2dξ <∞}.

It is clear that H0(Rd ) = L2(Rd ). When s ≥ 0, Hs(Rd ) is the usual
Hilbert space of functions with s-square integrable derivatives.
The space H−s(Rd ) is understood as the dual of Hs(Rd ).
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The Asymptotic Regime

The Asymptotic Regime: Background and Notations

Notations.

We introduce the space Ḣ1(Rd ) with the norm ‖ · ‖Ḣ1(Rd ) defined
through the relation

‖m‖2H1(Rd ) = ‖m‖2L2(Rd ) + ‖m‖2Ḣ1(Rd )
.

The space Ḣ−1(Rd ) is defined as the dual of Ḣ1(Rd ) via the norm

‖m‖Ḣ−1 := inf{|〈p,m〉| : ‖p‖Ḣ1 ≤ 1}.
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The Asymptotic Regime

The Asymptotic Regime: W2 and Ḣ−1

Asymptotic Regime. It was shown [Villani 2003, Section 7.6] that
asymptotically W2 is equivalent to Ḣ−1

(dµ) (where the subscript (dµ)

indicates that the space is defined with respect to the reference
probability measure dµ = f (x)dx) in the sense that if µ is a measure
and dµ an infinitesimal perturbation that has zero total mass, then

W2(µ, µ+ dπ) = ‖dπ‖Ḣ−1
(dµ)

+ o(dπ).

Behavior of Global Minimizers. This result allows us to easily
analyze the behavior of W2 inverse solutions (provided that we are
lucky enough to find them through minimization).
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The Asymptotic Regime

Linear Inverse Problems

Linear Models. We start with the linear inverse problem give by the
model:

g = Am .

When this model is viewed as the linearization of the nonlinear model,
m should be understood as the perturbation from the background m0,
which is often denoted as δm.
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The Asymptotic Regime

Linear Inverse Problems

Forward Operator. We assume, without loss of generality, that the
linear operator A is diagonal in the Fourier domain and has for symbol
(Fourier multiplier)

Â(ξ) ∼ 〈ξ〉−α, 〈ξ〉 :=
√

1 + |ξ|2.

This assumption is not essential at all. It is only made to simplify the
calculations.
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The Asymptotic Regime

Linear Inverse Problems

Conditioning of Inverse Problem. Most of inverse problems has
exponent α > 0. That is, the forward operator A is “smoothing” and
therefore the linear inverse problem Am = g is ill-conditioned (so would
be the corresponding nonlinear inverse problem f (m) = g when A is
thought as the linearization of f ).

The size of α describes the degree of ill-conditioning of the inverse
problem.

The misnomer well-conditioned is often loosely used to refer to the
case when α is positive but very small (such as in Radon transform).
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The Asymptotic Regime

Preconditioning Effects of Weak Norms

Inverting the Linear Problem with Noisy Data. Let consider solving
the linear inverse problem with noisy data gδ in the Hs least-squares
framework.

We invert for m as the minimizer of

Φ(m) :=
1
2
‖Am − gδ‖2Hs

=
1
2

∫
Rd
〈ξ〉2s

[
Âm̂ − ĝδ

]2
dξ

Kui Ren (Columbia) Wasserstein Metric for Inverse Problems July 8, 2020 19 / 47



The Asymptotic Regime

Preconditioning Effects of Weak Norms

Inverting the Linear Problem with Noisy Data This is a convex
minimization problem whose solution can be written as

m̂(ξ) =
(

Â∗(ξ)
(
〈ξ〉2sÂ

))−1
Â∗(ξ)

(
〈ξ〉2sĝδ(ξ)

)
.

where Â∗ is the L2 adjoint of Â.

When s = 0, the result is simply the classical L2 least-squares solution
in the Fourier domain. When −s > 0, this is a “preconditioned” version
of the L2 solution.
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The Asymptotic Regime

Preconditioning Effects of Weak Norms

Inversion in Physical Space. The inversion in physical space is simply:

m =
(

A∗(I −∆)sA
)−1

A∗(I −∆)sgδ.

where (I −∆)s/2 is the operator defined through:

(I −∆)s/2m := F−1
(
〈ξ〉sm̂

)
.

Positive s. When s > 0, (I −∆)s/2 is a differential operator (nonlocal in
the Fourier space). Applying (I −∆)s to the datum gδ amplifies high
frequency component of the datum.

Negative s. When s < 0, (I −∆)s/2 is a (smoothing) integral operator.
The inversion can be seen as being “preconditioned” in this case.
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The Asymptotic Regime

Resolution Analysis

Approximate Inverse. Let Rc be an approximation to the inverse of A
that is defined through its symbol R̂c(ξ):

R̂c(ξ) =

{
〈ξ〉α, |ξ| < ξc

0 |ξ| > ξc

Reconstruction Error. Let us define m0 := Rcg as an approximate
solution. Following classical results, it is straightforward to verify that

‖m−m0‖L2 ≤ ‖Rc‖L(Hs;L2)δ+‖(RcA−I)m‖L2 ≤ 〈ξc〉α−sδ+〈ξc〉−β‖m‖Hβ .

under the a priori assumption that m ∈ Hβ for some β > 0. Here
δ = ‖gδ − g‖Hs .
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The Asymptotic Regime

Resolution Analysis

Optimal Error Bound. We can select 〈ξc〉 = (δ−1‖m‖Hβ )
1

α+β−s to
minimize the error of the reconstruction, which is bounded by

‖m −m0‖L2 ≤ ‖m‖
α−s
α+β−s

Hβ δ
β

α+β−s .

Optimal Resolution. Therefore reconstruction based on the Hs

framework has a spatial resolution

ε := 〈ξc〉−1 ∼ δ
1

α+β−s .
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The Asymptotic Regime

Resolution Analysis

Interplay Between Conditioning (α), Regularity (β) and Metric (s). The
case of s = 0 corresponds to the usual reconstruction in the L2

framework. For fixed α and β, the result says that the resolution of the
inversion degenerates when s gets smaller. Therefore, at a fixed noise
level, reconstructions in the Hs framework with s < 0 always look
smoother.

When |α| or |β| (or both) is much larger than |s|, the
smoothing/desmoothing effect of the metric might not be very visible.

Kui Ren (Columbia) Wasserstein Metric for Inverse Problems July 8, 2020 24 / 47



The Asymptotic Regime

Resolution Analysis
Theorem

Let Rc be an approximation to A−1 defined through its symbol:

R̂c(ξ) ∼

{
〈ξ〉α, |ξ| < ξc

0, |ξ| > ξc
.

Let δ = ‖gδ − g‖Hs be the Hs norm of the additive noise in gδ. Then
the reconstruction error ‖m −mc

δ‖L2 , with mc
δ := Rcgδ obtained as the

minimizer of ΦHs (m), is bounded by

‖m −mc
δ‖L2 . ‖m‖

α−s
α+β−s

Hβ δ
β

α+β−s .

The bound is optimal and is achieved when

〈ξc〉−1 ∼ (δ‖m‖−1
Hβ )

1
α+β−s .
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The Asymptotic Regime

The Impact of Weighting

Weighted Norm. If we weight the Hs norm with the data to be
matched, the minimization problem for the inversion has the objective
function:

ΦHs
(dµ)

(m) :=
1
2
‖Am − gδ‖2Hs

(dµ)

=
1
2

∫
Rd

∣∣∣√̂gδ ~
[
〈ξ〉s(Âm̂ − ĝδ)

]∣∣∣2dξ.
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The Asymptotic Regime

The Impact of Weighting

Inversion with Weighted Norms. The reconstructed solution in this
case, written in physical space, is:

m =
(

A∗(I −∆)s/2gδ(I −∆)s/2A
)−1

A∗(I −∆)s/2gδ(I −∆)s/2gδ.

Impact of Weighting. The only new thing is the introduction of the
inhomogeneity, which depends on the datum gδ, in the preconditioning
operator (I −∆)s (by replacing it with (I −∆)s/2gδ(I −∆)s/2).
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The Non-asymptotic Regime

The Non-asymptotic Regime

Non-asymptotic Regime. When f (m) is very far away from g, that is
when initial guess is very far from the true m, we do not have a good
understanding of what is going on. However, we could still see the
main effect of the quadratic Wasserstein metric: the smoothing effect.

The W2 minimization formulation of inverting f (m) = g minimizes:

ΦW2(m) =

∫
Rd
|x− T(x)|2f (m(x))dx

where T takes f (m) to g.
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The Non-asymptotic Regime

The Non-asymptotic Regime

The variation of ΦW2 with respect to m (along the trajectory of mass
conservation) can be found as:

δΦW2

δm
(mk ) =

∫
Rd

( |x− Tk (x)|2

2
f ′(mk )[δm]

− (x− Tk (x))f (x) · T′k
[
f ′(mk )[δm]

])
dx,

where Tk denotes the optimal transport map at iteration k (that is, for
mk ), and T′k [δf ] denotes the derivative of Tk with respect to f (not m) in
the direction δf . We have assumed that the map m 7→ f (Hβ → C0,α) is
Fréchet differentiable at any admissible m.
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The Non-asymptotic Regime

The Non-asymptotic Regime

This gives us that the steepest descent direction of ΦW2 at mk is

ζk (x) = f ′∗(mk )
[ |x− Tk (x)|2

2
+ ψ(x)

]
,

where f ′∗(mk ) denotes the L2 adjoint of the operator f ′(mk ), and ψ is
the weak solution to the (adjoint) linearized Monge-Ampère equation:

∑
ij

aij
∂2ψ

∂xi∂xj
−
∑

j

bj
∂ψ

∂xj
= −∇ ·

((
x− Tk (x)

)
f (x)

)
.
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The Non-asymptotic Regime

The Non-asymptotic Regime

Then Caffarelli’s regularity theory allows one to show that

Theorem

If f ∈ Ck ,α(Rd ) and g ∈ Ck ,α(Rd ), then

(f (m),g) 7→ |x− Tk (x)|2

2
+ ψ(x)

is Ck ,α 7→ Ck+1,α.

Note that the steepest descent direction of ΦL2 at mk is

ζk (x) = f ′∗(mk )
[
f (mk )− g

]
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The Non-asymptotic Regime

The Non-asymptotic Regime

In 1D, we can make things explicit. Let F and G be the cumulative
density functions for f and g respectively. Then the optimal
transportation map from f to g is given by T (x) = G−1 ◦ F (x).

This leads to that

ζk (x) = f ′∗(mk )
[(x − Tk (x))2

2
− pk (+∞) + pk (x)

]
.

with the function pk (x) is defined as

pk (x) =

∫ x

−∞

(y − Tk (y))f (mk (y))

g(Tk (y))
dy

.
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The Non-asymptotic Regime

The Non-asymptotic Regime

Figure 3: The gradients of the objective functions for the inverse diffusion
problem in one-dimensional domain Ω = (0,1). Shown are true m (i.e. the
absorption coefficient σ) and two initial guesses (left), the gradients of ΦL2 (m)

at the initial guesses (middle), and the gradients of ΦW2 (m) at the initial
guesses (right).
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The Non-asymptotic Regime

The Non-asymptotic Regime

Figure 4: The gradients of the objective functions for the inverse diffusion
problem in two-dimensional domain Ω = (0,1)× (0,1). Shown are true m (i.e.
the absorption coefficient σ) (top left), the initial guess (top right), the gradient
of ΦL2 (m) at the initial guesses (bottom left), and the gradient of ΦW2 (m) at
the initial guess (bottom right).
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The Quest for Convexity

The Quest for Convexity

W2 Convexifies Some Inverse Problems. We show here that W2

convexifies certain inverse problems.

A Simple Transport Model. Consider a nonlinear problem defined
through the following operator, m := (η, λ,v):

f (m)(x) :=
1
|η|d

φ(
x− λv
η

),

where φ is a given probability density function, v is a given constant
vector, while λ and η 6= 0 are real constants.
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The Quest for Convexity

The Quest for Convexity

A Simple Transport Model. When η = 1, this operator serves as a
model of transport of a quantity φ in a given uniform flow v for a
distance λ. In other words, ψ(λ,v) := f (m) is the solution to the
following transport equation at time λ:

∂ψ

∂t
+ v · ∇ψ = 0, in R+ × Rd , ψ(0,x) = φ(x), on Rd .

The parameter η models the dilation of the transported signal by a
factor 1

η and the factor 1
|η|d make sure that the dilated signal is still a

probability density function.
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The Quest for Convexity

The Quest for Convexity

Inverse Transport. For a given function φ, we are interested in finding

the unknown m from the datum g :=
1
|ηg |d

φ(
x− λgvg

ηg
) by matching

the predicted datum f with g under the W2 distance.

Double Convexity. It is well-known that W 2
2 (f ,g) is convex with

respect to λv and η.

W 2
2 (f ,g) = (η − ηg)2M2 − 2(η − ηg)(λgvg − λv) ·M1 + |λgvg − λv|2

when M2 :=
∫
Rd |x|2φ(x)dx and M1 :=

∫
Rd xφ(x)dx are finite.
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

A General Convolution Model. Take the forward operator as a
general convolution operator:

f (m(x)) ≡ Am(x) :=

∫
Rd

K (x− y)m(y)dy.

This type of operators appear in many areas of applications, such as
signal and image processing and optical imaging, where A serves as
the model of the point spread function of some given physical systems.

The Deconvolution Problem. Deconvolution problem aims at
inverting A with a given (possibly noisy) datum gδ to find m. The case
with m being a δ function is of great importance.
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

Small Inclusions/Localized Sources. In general, let 0 < ε� 1 be
given. We introduce

My,ε = {m(x) ≥ 0 | ∃Bε(y) ⊆ supp(m) s.t.∫
Bε(y)

m(x)dx ≥ (1− εd+1)

∫
Rd

m(x)dx}

where Bε(y) denote the ball of radius ε centered at y. Functions in
My,ε have their total mass concentrated in a ball of radius ε, and are
therefore highly localized.
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

We summarize what is known on this problem in the following theorem.

Theorem
Let f and g be generated with mf and mg respectively. Assume that mf

and mg have the same total mass. (i) For any kernel function K (x) with
finite total mass, if

mζ(x) = δ(x− x̄ζ), ζ ∈ {f ,g}

then we have that
W 2

2 (f ,g) = |x̄f − x̄g |2.

(ii) For any kernel function K (x) ∈ C2(Rd ), if mζ ∈ C2(Rd )∩Mx̄ζ , ε, then

W 2
2 (f ,g) = |x̄f − x̄g |2 +O(εd+1).
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

Observation (i). Deconvolution from datum g, with an arbitrary kernel
K , to recover the location of a point source is a convex problem under
the W2 metric. This is a simple but NOT obvious observation.
Remember that once the source is parameterized in terms of the
location, the convolution problem becomes nonlinear (with respect to
the location).

Observation (ii). In fact, the source in part (i) does not need to be truly
point source. It just needs to be highly localized.
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

Difference to Ḣ−1. Recall that the Ḣs distance between f and g is
given by

‖f − g‖2Ḣs = 2
∫
Rd
|ξ|2s|1− cos(ξ · (xf − xg))| |K̂ (ξ)|2dξ.

For a general kernel function K , one can only expect this to be a
convex function of xf − xg when xf and xg are sufficiently close (in
which case a first-order Talyor expansion shows the convexity).
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The Quest for Convexity

The Quest for Convexity: A Nonlinear Deconvolution Problem

Figure 5: Top row: plots of the ‖f − g‖2
L2 (left), ‖f − g‖2

Ḣ−1 (middle) and
W 2

2 (f ,g) (right) for the m(x) given by a Gaussian in the two-dimensional
region λx̄− λg x̄g ∈ [−10,10]2 with Σ = Σg = I2. Bottom row: the
corresponding cross-sections along the left bottom to top right diagonal.
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The Quest for Convexity

Concluding Remarks

There are great interests in recent years on W2 inversion. Since W2

metrics are much more expensive to compute compared to classical
metrics we use, “good” properties (if any) of W2 inversion need to be
discovered for it to be a legit alternative. Here are key observations
from our study:

In the ideal world, the W2 functional finds the same global
minimizers as the L2 functional.

The W2 inversion is robust w.r.t. high-frequency noise in the data.

The W2 inversion eliminates high-frequency components of the
unknown (which is not a major issue for ill-posed inverse problems
since the forward operators already smooth out high-frequency
information in the unknown).
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The Quest for Convexity

Concluding Remarks

The W2 functional convexifies certain inverse problems.

While the smoothing effect of W2 can be replaced by metrics
induced by weaker Sobolev norms, it is not clear what metrics
share the convexity property that W2 has on some inverse
problems.

Similar effects are also observed in other forms of Wasserstein
metrics: W1 compared to L1 (Ding-R. 2020), as well as various
modified W2 metrics induced by unbalanced optimal transport
(Ding-Du-R. 2020).

It is of great interests to search for other nonlinear inverse
problems that can be convexified with the Wasserstein metrics.
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